skip to main content


Search for: All records

Creators/Authors contains: "Wroe, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The stem-group euarthropodAnomalocaris canadensisis one of the largest Cambrian animals and is often considered the quintessential apex predator of its time. This radiodont is commonly interpreted as a demersal hunter, responsible for inflicting injuries seen in benthic trilobites. However, controversy surrounds the ability ofA. canadensisto use its spinose frontal appendages to masticate or even manipulate biomineralized prey. Here, we apply a new integrative computational approach, combining three-dimensional digital modelling, kinematics, finite-element analysis (FEA) and computational fluid dynamics (CFD) to rigorously analyse anA. canadensisfeeding appendage and test its morphofunctional limits. These models corroborate a raptorial function, but expose inconsistencies with a capacity for durophagy. In particular, FEA results show that certain parts of the appendage would have experienced high degrees of plastic deformation, especially at the endites, the points of impact with prey. The CFD results demonstrate that outstretched appendages produced low drag and hence represented the optimal orientation for speed, permitting acceleration bursts to capture prey. These data, when combined with evidence regarding the functional morphology of its oral cone, eyes, body flaps and tail fan, suggest thatA. canadensiswas an agile nektonic predator that fed on soft-bodied animals swimming in a well-lit water column above the benthos. The lifestyle ofA. canadensisand that of other radiodonts, including plausible durophages, suggests that niche partitioning across this clade influenced the dynamics of Cambrian food webs, impacting on a diverse array of organisms at different sizes, tiers and trophic levels.

     
    more » « less
    Free, publicly-accessible full text available July 12, 2024